Расчет горения природного газа

Влияние материала труб на расчет

Для строительства газопроводов можно использовать трубы, изготовленные только из определенных материалов: стали, полиэтилена. В некоторых случаях применяются изделия из меди. Скоро будут массово использоваться металлопластиковые конструкции.


Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, которое влияет на процесс перемещения газа. Причем, этот показатель значительно выше у стальных изделий, чем у пластиковых

Сегодня нужные сведения можно получить только для стальных и полиэтиленовых труб. В результате проектирование и гидравлический расчет можно выполнять только с учетом их характеристик, чего требует профильный Свод правил. А также в документе указаны необходимые для исчисления данные.

Коэффициент шероховатости всегда приравнивается к следующим значениям:

  • для всех полиэтиленовых труб, причем независимо новые они или нет, — 0,007 см;
  • для уже использовавшихся стальных изделий — 0,1 см;
  • для новых стальных конструкций — 0,01 см.

Для каких-либо других видов труб этот показатель в Своде правил не указывается. Поэтому их использовать для строительства нового газопровода не стоит, так как специалисты горгаза могут потребовать внести коррективы. А это опять же дополнительные расходы.

8.1. Расчет высоты источника выброса загрязняющих веществ в атмосферу над уровнем земли, Н(м)

8.1.1. Для высотных факельных установок:

НВ=hВ + LФ,(8.1)

где hВ(M) — высота факельной трубы (устанавливается по проектным данным высотной факельной установки);

LФ(м) — длина факела (рассчитывается по , либо определяется по номограммам Приложения Ж.

8.1.2. Для горизонтальный факельных установок:

НГ=0.707(LФ — lа) ± hГ,(8.2)

Где la(м) — расстояние от сопла трубы до противоположной стены амбара;

hГ(M) — расстояние выходного сопла от уровня земли (со знаком «плюс», если труба выше уровня земли, и со знаком «минус» в противном случае);

0.707 — коэффициент, учитывающий угол отклонения факела от вертикали.

8.1.3. Длина факела рассчитывается согласно .

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.

Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, высокого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.

Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Расчет мощности выбросов вредных веществ в атмосферу.

6.1. Расчет физико-химических характеристик сжигаемого попутного нефтяного газа.

6.1.1. Расчет плотности rГ, кг/м3 ().

6.1.2. Расчет условной молекулярной массы mГ, кг/ноль ().

6.1.3. Расчет массового содержания химических элементов (% масс.) в ПНГ ( и ).

6.1.4. Расчет числа атомов элементов в условной молекулярной формуле ПНГ ( и ).

Для заданных метеоусловий:

— температура t°, C;

— давление Р, мм.рт.ст.;

— относительная влажность j (в долях или %).

6.2.1. Определение кассового влагосодержания d (кг/кг) влажного воздуха по ).

6.2.2. Расчет массовых долей компонентов во влажном воздухе ( и ).

6.2.3. Расчет количества атомов химических элементов в условной молекулярной формуле влажного воздуха ().

6.2.4. Расчет плотности влажного воздуха rВ.В, кг/м3 ().

6.3.1. Расчет мольного стехиометрического коэффициента М ().

6.3.2. Определение теоретического количества влажного воздуха VВ.В (м3/м3), необходимого для полного сгорания 1 м3 ПНГ ().

6.3.3. Расчет количества продуктов сгорания Vпс (м3/м3), образующихся при стехиометрическом сгорании 1 м3 ПНГ в атмосфере влажного воздуха ().

6.4.1. Расчет скорости распространения звука в сжигаемой газовой смеси UЗВ (м/с) ( или графики 1-4 ).

6.4.2. Проверка выполнения условия бессажевого горения:

Uист > 0.2UЗВ(6.1)

6.5. Определение удельных выбросов вредных веществ на единицу массы сжигаемого попутного нефтяного газа (кг/кг).

6.5.1. Для оценок мощности выбросов, оксида углерода, оксидов азота (в пересчете на диоксид азота), а также сажи в случае невыполнения условия бессажевого сжигания используются опытные значения удельных выбросов на единицу массы сжигаемого газа , представленные в нижеследующей таблице:

Удельные выбросы (кг/кг)

Бессажевое сжигание

Сжигание с выделением сажи

qсо

2·10-2

0.25

qNOX

3·10-3

2·10-3

qсажи

3·10-2

бенз(а)пирен

2·10-11

8·10-11

В случае сжигания серосодержащего попутного нефтяного газа удельный выброс диоксида серы рассчитывается по формуле:

,(6.2)

где mSO2 — молекулярная масса SO2. mГ — условная молекулярная масса горючего, s — количество атомов серы в условной молекулярной формуле попутного нефтяного газа (см. , ).

При необходимости определения выбросов со2, N2, О2, H2O следует руководствоваться формулами, приводимыми в .

Вредные вещества при сжигании попутного нефтяного газа попадают в атмосферу также за счет недожога газа. Коэффициент недожога определяется или экспериментально для факельных установок определенной конструкции, или полагается равным 0.0006 при бессажевом сжигании и 0.035 в противном случае.

Удельные выбросы углеводородов (в пересчете на метан), а также содержащихся в газе сернистых соединений, таких как сероводород и меркаптаны, определяются по общей формуле:

(Уд. выброс)=0.01 * (коэф. недожога) * (массовая доля в %)(6.3)

Автоматизация процессов сжигания газа

Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

В существующих газоиспользующих установках применяют системы частичной или комплексной автоматизации.

Современная комплексная газовая автоматика состоит из следующих основных систем:

  • автоматики регулирования,
  • автоматики безопасности,
  • аварийной сигнализации,
  • теплотехнического контроля.

Автоматика регулирования промышленного газового оборудования и агрегатов предназначена для управления и регулирования процесса горения газа таким образом, чтобы оборудование и агрегаты работали в заданном режиме и обеспечивали оптимальный режим горения газа.

Автоматика безопасности прекращает подачу газа к горелкам газоиспользующих установок при нарушениях режима работы. При этом контролируются наиболее важные параметры:

  • наличие пламени в топке. При отсутствии пламени в топке подача газа на горелку немедленно прекращается;
  • давление газа на подводящем газопроводе. При изменении давления газа против установленного минимального и максимального значений подача газа прекращается;
  • разрежение в топке. При понижении разрежения в топке до минимально допустимого подача газа прекращается;
  • давление воздуха (при наличии соответствующих горелок). При падении давления воздуха до минимально допустимого подача газа прекращается;
  • температура воды в котле. Если температура воды превышает допустимую норму, то подача газа прекращается;
  • давление пара в котле. При повышении давления пара сверх установленного подача газа прекращается.

Для выполнения перечисленных функций используются приборы блокировки, контроля и сигнализации. Под блокировкой понимается устройство, обеспечивающее невозможность пуска газа или включения агрегата при нарушении персоналом требований безопасности. Под сигнализацией понимается устройство, обеспечивающее подачу звукового или светового сигнала при достижении предупредительного значения контролируемого параметра.

При отключении агрегатов подаются звуковой и световой сигналы. Контролируют также загазованность помещений, где установлены газовые приборы и агрегаты. Приборы контроля и сигнализации дают возможность устанавливать дистанционное управление газоиспользующими установками.

Приборы теплотехнического контроля помогают обслуживающему персоналу вести технологический процесс в оптимальном режиме.

Степень автоматизации газоиспользующего агрегата зависит от конкретных условий его эксплуатации.

Просмотров: 130

Правила выполнения расчета

Выше указывалось, что процедуру любого гидравлического расчета регламентирует профильный Свод правил с номером 42-101–2003.

Документ свидетельствует, что основным способом выполнения исчисления является использование для этой цели компьютера со специальными программами, позволяющими рассчитать планируемую потерю давления между участками будущего газопровода или нужный диаметр труб.

Любой гидравлический расчет выполняется после создания расчетной схемы, включающей основные показатели. Более того, в соответствующие графы пользователь вносит известные данные

Если нет таких программ или человек считает, что их использование нецелесообразно, то можно применять другие, разрешенные Сводом правил, методы.

К которым относятся:

  • расчет по приведенным в СП формулам — это самый сложный способ расчета;
  • расчет по, так называемым, номограммам — это более простой вариант, чем использование формул, ведь какие-либо исчисления производить не придется, потому что необходимые данные указаны в специальной таблице и приведены в Своде правил, и их просто нужно подобрать.

Любой из методов расчета приводит к одинаковым результатам. А поэтому вновь построенный газопровод будет способен обеспечить своевременную, бесперебойную подачу планируемого количества топлива даже в часы его максимального использования.

Приложение Д.Примеры расчета выбросов вредных веществ при сжигания попутного нефтяного газа

1. Попутный нефтяной газ Южно-Сургутского месторождения. Объемный расход газа Wv = 432000 м3 /сутки =5 м3/с. Сжигание бессажевое, плотность газа () rГ = 0.863 кг/м3. Массовый расход равен ():

Wg = 3600 rГ·Wv = 15534 (кг/час).

В соответствие с и выбросы вредных веществ в г/с составляют:

СО — 86.2 г/с; NOx — 12.96 г/с;

бенз(а)пирен — 0.1·10-6 г/с .

для вычисления выбросов углеводородов в пересчете на метан определяется массовая их доля, исходя из и . Она равна 120 %. Недожог равен 6·104. Т.о. выброс метана составляет

0.01·6·10-4·120·15534 = 11.2 г/с

Сера в ПНГ отсутствует.

2. Попутный нефтяной газ Бугурусланского месторождения с условной молекулярной формулой C1.489H4.943S0.011О0.016. Объемный расход газа Wv = 432000 м/сутки = 5 м/с. Факельное устройство не обеспечивает бессажевого горения. Плотность газа () rГ = 1.062 кг/м3. Массовый расход равен ():

Wg = 3600·rГ·Wv = 19116 (кг/час).

В соответствие и выбросы вредных веществ в г/с составляют:

СО — 1328 г/с; NOx — 10.62 г/с;

бенз(а)пирен — 0.3·10-6 г/с .

Выбросы сернистого ангидрида определяются , в которой s = 0.011, mГ = 23.455, mSO2 = 64. Отсюда

MSO2 = 0.278·0.03·19116 = 159.5 г/с

В данном случае недожог равен 0.035. Массовое содержание сероводорода 1.6%. Отсюда

MH2S = 0.278·0.035·0.01·1.6·19116 = 2.975 г/с

Выбросы углеводородов определяются аналогично примеру 1.

Повышение эффективности использования газового топлива

Эффективность использования газового топлива во многом зависит от его состава. Так, для высокотемпературных процессов целесообразно использовать газ с малым содержанием балласта и высокой жаропроизводительностью. В этом случае обеспечивается повышение производительности газовых установок и благодаря уменьшению продолжительности процесса сгорания газа и снижению потерь топлива в окружающую среду снижается удельный расход топлива на единицу выпускаемой продукции.

Во многих технологических процессах, связанных с процессами сушки воздухом, применяется промежуточный теплоноситель – водяной пар. Получение водяного пара требует дополнительных источников теплоты, а между тем для сушки с успехом можно применять продукты сгорания газа: тогда отпадает необходимость специальных котельных установок и калориферов для нагрева воздуха паром.

Известно, что при сжигании одного кубического метра газа выделяется два кубических метра водяного пара, уходящего с продуктами сгорания. Если теплоту конденсации этих водяных паров использовать для нагрева питательной воды, можно повысить КПД котельных установок.

Другой резерв повышения эффективности использования топлива – сжигание газа в горелочных устройствах при больших тепловых напряжениях, что позволяет получать большее количество энергии в малом объеме.

Многие технологические процессы протекают при высокой температуре уходящих газов. Эффективность использования газа в этом случае повышается, если использовать теплоту уходящих газов для производства пара, нагрева воды или воздуха. Каждая калория, вносимая в печь с подогретым воздухом, экономит более одной калории теплоты сжигаемого газа.

Наиболее прогрессивен метод ступенчатого использования теплоты продуктов сгорания, основанный на сочетании работы низкотемпературных, среднетемпературных и высокотемпературных установок.

Теплоту уходящих газов, отводимых от котлов и печей, можно использовать для отопления сушильных установок, а теплоту конденсации водяного пара, содержащегося в продуктах сгорания газа, отводимых из котлов или сушилок, – для нагрева воды в контактных экономайзерах. Таким образом, продукты сгорания, отводимые из высокотемпературных установок, используют в низкотемпературных процессах для отопления этих установок; КПД ступенчатых установок может быть доведен до 95 %.

Продукты сгорания газа можно с успехом использовать в качестве источника диоксида углерода и инертных газов. Большой интерес представляет применение диоксида углерода для ускорения развития растений и повышения урожая. Известно, что органическая масса растений образуется путем фотосинтеза из СО2 и Н2О.

В атмосфере воздуха содержится по объему около 0,03 % СО2 и 21 % О2. Повышение концентрации диоксида углерода в теплицах с доведением его содержания в воздухе теплиц до 0,3 % позволяет увеличить на 20 % урожай огурцов и других овощей, на 50 % – число цветов и ускорять их развитие, примерно на 100 % повысить зеленую массу табака, чая, герани и других культур.

Обогащение воздуха теплиц диоксидом углерода имеет важное значение, так как с ростом количества теплиц и применением гидропоники, при которой отсутствует выделение СО2 из почвы, потребность в диоксиде углерода значительно возрастает. Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов

Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов.

Продукты полного сгорания газа можно применять также в качестве инертных газов для изоляции огнеопасных материалов от контакта с воздухом, продувки взрывоопасной аппаратуры, газовых коммуникаций.

2.1. Мазут

Пусть мазут, содержащий 86,5 % Ср, 10,5 % Нр,
0,3 % Nр, 0,3 % Ор,
0,3 % Sр, 1,8 % W р
и 0,3 % Aр, сжигается в воздухе, при
коэффициенте расхода воздуха . Температура подогрева
воздуха  оС.

Требуется рассчитать расход воздуха, необходимый для
горения 1 кг мазута, низшую теплоту сгорания топлива, действительную
температуру факела, количество и состав продуктов сгорания на 1 кг мазута.

Находим расход кислорода на горение мазута заданного
состава при коэффициенте расхода воздуха  по
формуле (11):

При сжигании мазута в обычном воздухе (k = 3,762)
расход сухого воздуха при n = 1
определяется по формуле (12):

При сжигании мазута в обычном воздухе с учётом
коэффициента расхода воздуха  определим по формуле (13):

Определим объёмы отдельных составляющих и суммарный
объем продуктов сгорания (14):

Определим процентный состав продуктов сгорания по
формуле (15):

Определим содержание воздуха в продуктах сгорания по
формуле (16):

Правильность расчета проверим
составлением материального баланса. Плотность каждого компонента продуктов
сгорания находим, разделив массу одного моля на объем, занимаемый одним молем
компонента (22,4 л). Плотность продуктов сгорания можно найти, разделив их
массу на объем.

Поступило, кг

Получено, кг

Мазут
. . . . . . . . . . . . . . . . 1,0

СО2
. . . . . . . 1,964.1,615=3,172

Воздух
. . . . . 1,29.11,53=14,87

2
. . . . . . . 2,857.0,002=0,006

___________

Н2О
. . . . . . . 0,804.1,198=0,964

Всего
. . . . . . . . . . . . . . . . 15,87

О2 . . . . . . . 1,428.0,22=0,315

N2 . . .
. . . . 1,25.9,106=11,383

__________

Всего
. . . . . . . . . . . . . . . . . . 15,84

Зола
. . . . . . . . . . . . . . . . . . . . 0,03

__________

Итого
. . . . . . . . . . . . . . . . . .15,87

Плотность продуктов сгорания равна: rп.с. = 15,84 / 12,141 = 1,3 кг/м3.

Низшую теплоту сгорания топлива определим по формуле
(8):

Определим калориметрическую температуру сгорания
топлива без учёта подогрева воздуха и топлива, тогда истинная энтальпия
продуктов сгорания, определяемая по формуле (18), будет равна:

.

Зададим температуру .
Энтальпия продуктов сгорания при этой температуре равняется (см. табл. 3):

Так как , то искомая
калориметрическая температура выше, чем .

Зададим температуру , при
которой найдем энтальпию продуктов сгорания рассматриваемого состава (см. табл.
3):

Так как получившееся значение энтальпии , то искомая температура ниже, чем . Тогда
калориметрическую температуру горения мазута заданного состава определим по формуле
(20):

Действительную
температуру факела определим по формуле (21):

.

Определим калориметрическую температуру сгорания
топлива при температуре подогрева воздуха , для
этого начальную энтальпию продуктов сгорания вычислим по формуле (18):

.

Зададим температуру .
Энтальпия продуктов сгорания при этой температуре равняется (см. табл. 3):

Так как , то искомая
калориметрическая температура выше, чем .

Зададим температуру .
Энтальпия продуктов сгорания при этой температуре равняется (см. табл. 3):

Так как , то искомая калориметрическая
температура ниже, чем . Определим её по формуле (20):

По
формуле (21) определим действительную температуру факела:

.

Методы сжигания газа

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рис. 1) на:

  • диффузионные;
  • смешанные;
  • кинетические.

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух – из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Рис. 1. Методы сжигания газа: а – диффузионный; б – смешанный; в – кинетический; 1 – внутренний конус; 2 – зона первичного горения; 3 – зона основного горения; 4 – продукты сгорания; 5 – первичный воздух; 6 – вторичный воздух

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа (рис. 1, а) диффундирует воздух, а из струи газа в воздух – газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся:

  • высокая устойчивость пламени при изменении тепловых нагрузок,
  • отсутствие проскока пламени,
  • равномерность температуры по длине пламени.

Недостатками этого метода являются:

  • вероятность термического распада углеводородов,
  • низкая интенсивность горения,
  • вероятность неполного сгорания газа.

При смешанном методе сжигания (рис. 1, б) горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания (рис. 1, в) к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле.

Достоинство этого метода сжигания – малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок.

Недостаток – необходимость стабилизации газового пламени.

Основные понятия и определения.

3.1. Факельная установка — устройство для сжигания в атмосфере, непригодного для использования, в народном хозяйстве, попутного нефтяного газа (ПНГ); является одиночным источником загрязнения атмосферы.

3.1.1. Высотная факельная установка — установка в которой подача ПНГ под давлением в зону горения производится по вертикальному факельному стволу (трубе), высотой 4м и более.

3.1.2. Горизонтальная факельная установка — открытый амбар с подачей попутного нефтяного газа под давлением в зону .горения по горизонтальному факельному стволу (трубе); конструкция амбара обеспечивает выход горящего факела в атмосферу под углом 45°.

3.2. Продукты сгорания попутного нефтяного газа, покидающие факельную установку, а также несгоревшие компоненты, являются потенциальным источником загрязнения окружающей атмосферы вредными веществами.

Качественная и количественная характеристики выбросов вредных веществ определяется типом и параметрами факельной установки и составом сжигаемого ПНГ.

3.3. Конструкции высотных и горизонтальных факельных установок обеспечивают бессажевое горение попутного нефтяного газа при выполнении установленного «Правилами устройства и безопасной эксплуатации факельных систем», утв. Госгортехнадзором РФ от 21.04.92 следующего условия: скорость истечения сжигаемого газа должна превышать 0.2 от скорости распространения звука в газе.

3.4. Для оценки максимальных приземных концентраций загрязняющих веществ в атмосфере, источником которых являются факельные установки, настоящая методика предусматривает выполнение расчетов следующих параметров:

— мощности выброса вредных веществ;

— расхода выбрасываемой в атмосферу газовой смеси;

— высоты источника выброса над уровнем земли;

— средней скорости поступления в атмосферу газовой смеси;

— температуры выбрасываемой в атмосферу газовой смеси.

2.2 Оксиды серы

Суммарное количество оксидов серы MSO2, выбрасываемых в атмосферу с дымовыми газами (г/с, т/год),
вычисляют по формуле

где В — расход натурального топлива за рассматриваемый период,
г/с (т/год);

Sr- содержание серы в топливе на рабочую массу, %;

η’SO2 — доля
оксидов серы, связываемых летучей золой в котле;

η»SO2_доля оксидов серы,
улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц.

Ориентировочные значения η’SO2при сжигании различных видов топлива составляют:

                                                      Топливо                                    η’SO2

торф……………………………………………………………………………….. 0,15

сланцы эстонские и ленинградские…………………………………. 0,8

сланцы других месторождений………………………………………… 0,5

экибастузский уголь……………………………………………………….. 0,02

березовские угли Канско-Ачинского
бассейна

для топок с твердым шлакоудалением……………….. 0,5

для топок с жидким шлакоудалением………………… 0,2

другие угли Канско-Ачинского
бассейна

для топок с твердым шлакоудалением……………….. 0,2

для топок с жидким шлакоудалением……………….. 0,05

угли других месторождений…………………………………………….. 0,1

мазут……………………………………………………………………………… 0,02

газ……………………………………………………………………………………. 0

Доля оксидов серы (η»SO2), улавливаемых в сухих золоуловителях, принимается равной
нулю. В мокрых золоуловителях эта доля зависит от общей щелочности орошающей воды
и от приведенной сернистости топлива Sпр.

                                                                             (36)

При характерных для эксплуатации удельных расходах воды на
орошение золоуловителей 0,1 — 0,15 дм3/нм3η»SO2определяется по рисунку Приложения .

При наличии в топливе сероводорода к значению содержания серы на
рабочую массу Sr в формуле
() прибавляется величина

ΔSr= 0,94
· H2S,                                                                  (37)

где H2S- содержание на рабочую массу сероводорода в топливе, %.

Примечание. —
При разработке нормативов предельно допустимых и временно согласованных
выбросов (ПДВ, ВСВ) рекомендуется применять балансово-расчетный метод, позволяющий
более точно учесть выбросы диоксида серы. Это связано с тем, что сера
распределена в топливе неравномерно. При определении максимальных выбросов в
граммах в секунду используются максимальные значения Sr
фактически использовавшегося топлива. При
определении валовых выбросов в тоннах в год используются среднегодовые значения
Sr.

Выводы и полезное видео по теме

Этот ролик дает возможность понять, с чего начинается гидравлический расчет, откуда проектировщики берут нужные данные:

В следующем ролике приведен пример одного из видов компьютерного расчета:

Далее можно ознакомиться с примером расчета с использованием компьютерной программы:

Чтобы выполнить гидравлический расчет с помощью компьютера, как это позволяет профильный Свод правил, достаточно потратить немного времени на ознакомление с программой и сбор нужных данных.

Но практического значения все это не имеет, так как составление проекта — процедура гораздо более объемная и включает в себя множество других вопросов. Ввиду этого большинству граждан придется обращаться за помощью к специалистам.

Появились вопросы, нашли недочеты или можете дополнить наш материал ценной информацией? Оставляйте свои комментарии, задавайте вопросы, делитесь опытом в расположенном ниже блоке.

Ссылка на основную публикацию