Высоковольтные выключатели: классификация, устройство, принцип действия

Принцип гашения дуги

Успехи в разработках элегазовых выключтаелей откровенно оказали значительное воздействие на введение в эксплуатационную деятельность компактно размещенных на небольшой территории открытых распределительных устройствах размещенных на открытом воздухе, закрытых распределительных устройствах – размещенных в помещении и элегазовых комплектно распределительных устройствах. В элегазовых выключателях могут использоваться, разные методы гашения дуги зависимо от номинального напряжения, номинального тока отключения и объективных оценок энергосистемы (а также различных электроустановок).

В элегазовых дугогасительных устройствах , в сравнение от воздушных дугогасительных устройств, при гашении дуги истечение газа через сопло происходит не в воздушную среду, а в скрытный в себе объем камеры, наполненный элегазом при условно сравнительно маленьком лишнем давлении.

По методике гашения электрической дуги при выключении различают последующие элегазовые выключатели:

  • Автокомпрессионный элегазовый коммутационный аппарат , где существенно нужный крупно масштабный расход элегаза через сопла компрессионного дугогасительного устройства создается по ходу подвижной системы выключателя (автокомпрессионный выключатель с одной ступенью давления).
  • Элегазовый выключатель с электромагнитным дутьем, в котором гашение дуги в дугогасительном устройстве гарантируется вращением её по кольцевым контактам под воздействием магнитного поля, формируемого отключаемым током.
  • Элегазовый выключатель с камерами низкого и высокого давления, в каком принцип снабжения газового дутья через сопла в дугогасительном аппарате аналогичен воздушным дугогасительным устройствам (Элегазовый выключатель с 2 – мя ступенями давления).
  • Автогенерирующий элегазовый выключатель, где очень важный крупномасштабный расход элегаза через сопла дугогасительного устройства формируется за счет подогрева и увеличения давления элегаза дугой отключения в специально подготовленной камере (автогенерирующий элегазовый выключатель с одной ступенью давления).

Виды приводов элегазовых выключателей

     Разрыв электрических контактов в герметичной камере ЭВ, заполненной элегазом, происходит за счет перемещения подвижной части дугогасящего устройства через изоляционную тягу, приводимую в действие специальным приводом. Привод представляет собой сложный силовой механизм, посредством которого приводится в действие контактная группа.

     Различают три основных вида приводных устройств:

1. Пневматический

2. Гидравлический

3. Пружинный.

     Устройства приводов для элегазовых выключателей подвергаются серьезным силовым нагрузкам, особенно в конструкциях для сверхмощных напряжений, в которых вес подвижной части превышает 100 кг, а движение контакта происходит до 25см, со скоростью 8 м/с, при нагрузке 80 кН.

     Качественной работе привода уделяется особое внимание, так как большинство аварий, произошедших с ЭВ, связаны именно с механической частью устройств

Конструкция элегазового выключателя

По конструкции различают колонковые и баковые выключатели. Колонковые ни внешне, ни по размерам принципиально не отличаются от маломасляных, кроме того, что в современных элегазовых выключателях 220 кВ только один разрыв на фазу. Баковые элегазовые выключатели имеют гораздо меньшие габариты по сравнению с масляными, имеют один общий привод на три полюса, встроенные трансформаторы тока.

В элегазовых выключателях применяются различные способы гашения дуги в зависимости от номинального напряжения, номинального тока отключения и эксплуатационных особенностей в месте установки. В элегазовых дугогасительных устройств в отличие от воздушных дугогасительных устройств при гашении дуги прохождение газа через сопло происходит не в атмосферу, а в замкнутый объем камеры, заполненный элегазом при относительно небольшом избыточном давлении. По способу гашения дуги в элегазе различаются следующие элегазовые выключатели:

  • автокомпрессионные с дутьем в элегазе, создаваемым посредством компрессионного устройства (элегазовые выключатели с одной ступенью давления);
  • в которых гашение дуги в дугогасительных устройствах обеспечивается вращением её по кольцевым контактам под действием поперечного магнитного поля, создаваемого отключаемым током (элегазовые выключатели с электромагнитным дутьем);
  • с дугогасительным устройством продольного дутья, в котором предварительно сжатый газ поступает из резервуара с относительно высоким давлением элегаза (элегазовые выключатели с двумя ступенями давления);
  • с дугогасительным устройством продольного дутья, в котором повышение давления элегаза происходит за счет разогрева газовой среды дугой отключения в специальной камере (элегазовые выключатели с автогенерирующим дутьем).

Привод выключателя

Приводы выключателей обеспечивают управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии.

В элегазовых выключателях применяют два типа привода:

  • пружинный привод, управляющим органом которого является кинематическая система рычагов, кулачков и валов;
  • пружинно-гидравлический привод, управляющим органом которого является гидросистема.

Особенности выбора

Для того чтобы правильно подобрать данный вид высоковольтных выключателей, в соответствии с местными условиями работы и конкретного оборудования, стоит обратить внимание на следующие критерии:

  1. Номинальное напряжение;
  2. Динамическая устойчивость;
  3. Параметры систем управления;
  4. Номинальный ток в рабочем режиме и режиме короткого замыкания;
  5. Частота включений и отключений;
  6. Климатическое исполнение;
  7. Скорость срабатывания выключателя ;
  8. Частота профилактических ремонтов и осмотров, в электроустановках без местного дежурного персонала это очень важный аспект;
  9. Износостойкость при коротких замыканиях;
  10. Габариты и размер вакуумной установки.

Назначение и принцип работы

Элегазовый выключатель — это разновидность высоковольтного выключателя, коммутационный аппарат, использующий элегаз в качестве среды гашения электронной дуги; предназначенный для оперативных подключений и отключений индивидуальных цепей или электрооборудования в энергосистеме.

 

Рисунок 1 – Схема элегазового выключателя

Элегазовые выключатели начали усиленно разрабатываться с 1980 г. и имеют большие перспективы при напряжениях 110…1150 кВ и токах отключения до 80 кА. В технически развитых странах элегазовые выключатели высокого и сверхвысокого напряжения (110-1150 кВ) практически вытеснили все другие типы аппаратов.

Элегазовые выключатели высокого напряжения выполняют работу за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает уведомление о том, что нужно отключить электрооборудование, контакты некоторых камер (если аппарат колонковый) размыкаются. Таким способом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на разные компоненты, но при этом и сама уменьшается из-за высокого давления в емкости.

В процессе использования элегазового выключателя выполняются циклы подключения и отключения коммутационного аппарата. При различных дейсвий с выключателем в режимных целях, в большинстве случаев, ток отключения располагается в границах обозначенных значений. Количество потенциально возможных операций зависимо от тока отключения устанавливает изготовитель. Для того, найти суммарное число операций отключения, существенно нужно пользоваться особой диаграммой взаимосвязи, которую можно найти в паспорте выключателя. Чем больше ток, тем меньшее количество возможных циклов включения/отключения элегазового выключателя. Выключатель специализирован для установки в ОРУ 110кВ, так как его номинальное рабочее напряжение – 126кВ. Выключатель делает работу в согласовании с заявленными производственным изготовителем при условиях:

  • установки на возвышенности над ярусом морского побережья не больше тысячи м-ов;
  • температуры окружающей среды от -350 С до +400 С;
  • установки в согласовании с необходимыми условиями завода-изготовителя;

Элегазовые выключатели различают

  • колонковые
  • баковые

Компрессионные элегазовые выключатели

Рассмотрим принцип действия автокомпрессионного элегазового выключателя Основные составные части этого выключателя изображены на (рис. 5.).
Рис. 5. Автокомпрессионный элегазовый выключатель Верхний токовый ввод
Абсолютное давление элегаза 0,5 бар. Герметизирующая насадка
Неподвижный дугогасительный контакт Подвижный основной контакт
Соединения между подвижными и неподвижными частями Подвижный дугогасительный контакт
Напорная камера Поршень
Вентиль Пружина
Нижний токовый ввод Главный шток из изолирующего материала
Рычаг вала Система уплотнений
Вал Молекулярное сито
Место крепления При включенном состоянии ток течёт через верхний токовый ввод (1), неподвижный дугогасительный контакт (4), подвижный основной контакт (5) и нижний токовый ввод (12) (рис. 6,а). После команды отключения привод приводит в действие вал (16), который вращаясь, через систему уплотнения (15) передает механический момент главному штоку (13) через рычаг вала (14) и происходит сжатие элегаза в напорной камере (8) (рис. 6,б). При этом неподвижный и подвижный дугогасительные контакты (4 и 7) остаются замкнутыми в силу поджатия пружины (11). После этого начинается расхождение неподвижного и подвижного дугогасительного контакта (4 и 7) в силу ослабления пружины (11) (рис. 6,в). Главный шток из изолирующего материала (13) начинает отдалять их друг от друга. При расхождении неподвижного и подвижного дугогасительных контактов между ними начинает гореть дуга. Как видно на рис. 5. к подвижному дугогасительному контакту прикреплен поршень (9) с герметизирующей насадкой (3), движущийся в напорной камере (8), обеспечивая при этом одновременно охлаждение и выдувание дуги элегазом под высоким давлением. Напорная камера с поршнем и герметизирующей насадкой при полном расхождении контактов обеспечивает полное гашение в дугогасящей камере (рис. 6,г).
Более усовершенствованной и надежной моделью автокомпрессионного выключателя является автокомпрессионный выключатель с главными токоведущими контактами. Рассмотрим его принцип действия и определим его составные части: При включенном состоянии ток течёт по главному токопроводу, состоящего из верхнего и нижнего токового ввода (22 и 19) и из неподвижного и подвижного контакта главного токопровода (20 и 21). После команды отключения привод приводит в действие вал (14), который вращаясь, через систему уплотнения (13) передает механически момент шатуну (17), закрепленный к главному штоку (10). Главный шток тянет за собой вниз подвижный контакт главного токопровода и происходит разрыв главного токопровода. При этом неподвижный и подвижный дугогасительные контакты (4 и 6) остаются замкнутыми в силу поджатия пружины (9) и отключаемый ток перераспределяется от главного токопровода на дугогасительный токопровод, подсоединяется к нижнему токовому вводу (19) через главный шток (10) и гибкую шину (18). Рис. 6. Принцип работы автокомпрессионного выключателя
Крышка Герметизирующая оболочка
Полюсное устройство Неподвижный дугогасительный контакт
Герметизирующая насадка Подвижный дугогасительный контакт
Поршень Напорная камера
Пружина Главный шток
Полюсное устройство Изогнутая рукоятка
Система уплотнений Вал
Молекулярное сито Крышка
Шатун Гибкая шина
Нижний токовый ввод Подвижный контакт главного токопровода (наклонный ножевой контакт)
Неподвижный контакт главного токопровода Верхний токовый ввод Рис.  7. Автокомпрессионный элегазовый выключатель с главными токоведущими контактами Замкнутый выключатель Разомкнутый главный контакт  Период дугогашения       Разомкнутый
выключатель Рис. 8. Принцип работы автокомпрессионного выключателя с главными токоведущими контактами
После перераспределения тока от главного токопровода на дугогасительный токопровод начинается расхождение неподвижного и подвижного дугогасительных контактов (4 и 6), в силу ослабления пружины (9) главный шток начинает все больше и больше отдалять их друг от друга. При расхождении неподвижного и подвижного дугогасительных контактов между ними начинает гореть дуга. Как видно на рис. 7. к подвижному дугогасительному контакту прикреплен поршень (7) с герметизирующей насадкой (5), движущийся в напорной камере (8), обеспечивая при этом одновременно охлаждение и выдувание дуговой плазмы элегазом под высоким давлением. Напорная камера с поршнем и герметизирующей насадкой при полном расхождении контактов обеспечивает полное гашение в дугогасящей камере. Описанный процесс изображен на рис. 8.

Особенности обслуживания и эксплуатации

В процессе эксплуатации таких коммутационных устройств на ОРУ (открытых распределительных устройствах) нужно учитывать что в шкафах приводов выключателей может скапливаться конденсат, который приводит к коррозии систем механизма, а также вторичных цепей управления и сигнализации. Для этого внутри шкафов заводом изготовителем предусмотрены нагревательные резисторы, работающие постоянно.

Все действия по включению или же отключению аппаратов возможны только, если давление газа не меньше допустимого, если пренебречь этим то появляется высокая вероятность повреждения и выхода со строя относительно дорого выключателя. Для этих целей должна быть налажена сигнализация минимального давления, а также блокировка управляющих цепей

Если же персонал заметил что давление упало, аппарат нужно вывести в ремонт и приступить к поиску причин снижения этого жизненно важного для него показателя. Естественно, что вывод его из работы должен выполняться со всеми необходимыми требованиями безопасности, предъявляемыми к данной электроустановке и изложенных в местных инструкциях

Для контроля давления должен быть обязательно исправный манометр, а после устранения утечки газа стоит дополнить его через специальное присоединение, которое расположено внутри приводного механизма.

Осмотр элегазовых выключателей выполняется ежедневно, а также один раз за две недели в ночное время суток

В сырую влажную погоду нужно обращать внимание на возникновение электрической коронации. Если величина отключаемого тока была предельно допустимая (при коротких замыканиях), то следует обеспечить качественное техническое обслуживание

Количество отключений как плановых, так и аварийных фиксируется в специально выделенных для этих нужд журналах.

Несмотря на существующие недостатки, элегазовый выключатель имеет свои сильные стороны поэтому является достойной заменой не только масляных, но и воздушных выключателей высокого напряжения.

Вакуумные выключатели 6-35 кВ. Преимущества и недоставки

Вакуумные выключатели, разработанные в 30-х годах прошлого века, достаточно быстро вытеснили с рынка морально и технологически устаревшие выключатели с масляной и воздушной дугогасящей средой. Такая популярность вакуумных выключателей объясняется рядом достоинств, которыми они обладают.

Преимущества

Высокая надежность и быстродействие

Показатели безаварийной работы вакуумных выключателей в разы превышают показатели масляных и воздушных выключателей. Высокая электрическая прочность вакуума позволила в разы сократить ход подвижных контактов вакуумного выключателя по сравнению с масляными и воздушными, обеспечив тем самым повышенное быстродействие и механическую надежность всего аппарата. К примеру, если при номинальном напряжении 10 кВ ход контактов вакуумного выключателя составляет 6-10 мм, то у масляного он достигает 100-200 мм на то же напряжение.

Коммутационная износостойкость

Технология эффективного гашения дуги и более совершенный конструктив вакуумных выключателей позволяют производителям заявлять о ресурсе вакуумных выключателей порядка 10 000 отключений номинального тока и до 200 отключений токов короткого замыкания, в то время как аналогичные параметры у масляных выключателей составляют 500 – 1000 и 3-10 отключений соответственно. Такой ресурс позволил значительно сократить расходы на техническое обслуживание и снизить число перебоев в электроснабжении потребителей.

Безопасность в эксплуатации

Вакуумные выключатели конструктивно подвергаются меньшим динамическим нагрузкам, имеют малую энергию привода, отсутствуют выбросы газа и масла, выключатель имеет меньшие габариты и массу, чем масляные и воздушные выключатели, а герметичное исполнение и отсутствие среды, поддерживающей горение, делают эти выключатели пожаробезопасными в процессе эксплуатации.

Недостатки

minus

Высокая стоимость ячейки

В начале статьи мы упоминали о преимуществах компактных ячеек типа КСО в сравнении с громоздкими многоотсечными КРУ с выкатным элементом. На данный момент на российском рынке представлены ячейки КСО с вакуумным выключателем только до 20 кВ, соответствующие требованиям ГОСТ. Но если речь заходит о напряжении 35 кВ, то дешевых и компактных ячеек типа КСО с вакуумным выключателем, соответствующих требованиям ГОСТ, в России нет.

minus

Коммутационные перенапряжения

Коммутационное перенапряжение — существенный недостаток вакуумных выключателей, в силу которого применение таких выключателей, к примеру, для электроснабжения шахтных трансформаторов и электрических машин, находящихся в условиях повышенной влажности и загрязненности, невозможно без дополнительного специального оборудования. Перенапряжения, возникающие при коммутации вакуумных выключателей, носят различных характер:

  • перенапряжения, вызванные токами среза
  • эскалация перенапряжений в цикле высокочастотных (ВЧ) повторных пробоев
  • перенапряжения при включении в цикле ВЧ встречных пробоев
  • перенапряжения в результате виртуальных токов среза
  • ВЧ броски тока высокой амплитуды

Приведенные выше физические явления характерны для выключателей с жесткими дугогасящими средами, к которым относится вакуум. Высокие кратности перенапряжений в первую очередь опасны для виткового оборудования (силовых трансформаторов и электрических машин). К примеру, силовые трансформаторы с облегченным уровнем изоляции рассчитаны до 23 и 34 кВ импульсных перенапряжений при 6 и 10 кВ номинального напряжения соответственно. Таких значений зачастую бывает недостаточно и использование вакуумных выключателей требует применения дополнительного оборудования для защиты таких потребителей.

Еще серьёзнее ситуация выглядит, когда потребителем является электродвигатель, так как двигатели обладают более низким уровнем изоляции по сравнению с трансформаторами и, в особенности, пониженной импульсной прочностью обмоток при воздействии волн с крутым фронтом. При определенном сочетании параметров схемы и начальных условий наблюдается постепенное нарастание максимумов волн (эскалация напряжений), при котором они могут достигать 5-тикратных значений по отношению к фазному напряжению двигателя. Такие процессы негативно сказываются на работе двигателей и приводят к их преждевременному выходу из строя.

Область применения выключателей в быту

Обычно в частных домах и квартирах используют автоматические выключатели. С их помощью, в случае надобности, обесточивают жилые помещения и проводят все необходимые монтажные работы, связанные с плановым обслуживанием или ремонтом электрических сетей.

Однако эти приборы – отнюдь не панацея. Автоматы в первую очередь служат для предохранения токоприемников и электрической проводки от агрессивного воздействия сверхтоков. Разрыв цепи относится к второстепенным задачам, которые выполняют эти приборы.


Компании, занимающиеся изготовлением элементов электросистемы, в сопроводительной документации всегда указывают, что автомат не предусматривает частой коммутации. Максимальный режим отключения не должен превышать 6 раз в час

Регулярное отключение энергии при помощи автомата – не самая удачная идея. Особенно, если при этом от розетки не отводится нагрузка. Модуль в этом случае изнашивается гораздо быстрее и выбирает свой рабочий ресурс за более короткое время, нежели было заявлено заводскими характеристиками.


Если модуль отключения нагрузки работает некорректно или в самом приборе выявился дефект, не стоит разбирать устройство и пытаться его чинить. Разумнее приобрести новый аппарат и вмонтировать его на место старого (неисправного)

Внутри корпуса постепенно выгорают и чернеют контакты, а само изделие теряет номинальную пропускную способность, перестает выполнять свои задачи и потом выходит из строя. Хозяевам в этой ситуации приходится в срочном порядке менять прибор.

Если проигнорировать этот момент, следующее короткое замыкание испортит проводку, спровоцирует воспламенение автомата и, возможно даже, приведет к более серьезным последствиям.


В групповых щитках прибор отключения нагрузки часто используется в качестве вводного коммутатора. Именно через него к распределителю подсоединяется силовой кабель, идущий от подстанции или другого щитка

Именно поэтому специалисты рекомендуют для частых отключений использовать не обычные автоматы, а прогрессивные и надежные выключатели нагрузки.

Эти элементы повысят безопасность электрощитков, обеспечат качественное, бесперебойное питание электричеством любого жилого помещения и позволят, в случае необходимости, удобно и быстро разомкнуть цепь, провести ремонтно-монтажные мероприятия любой сложности и снова подключить жилье к общей подающей энергию системе.

Установка прибора для деактивации нагрузок на входе в распределительный щиток позволяет снять напряжение с самого щитка и корректно заменить вышедшие из строя автоматические выключатели.

При наличии такого аппарата очень легко отключить любое помещение от централизованной питающей сети с целью планового обслуживания или выполнения необходимых ремонтных работ. Агрегат обеспечит полную безопасность мастеру и позволит быстро устранить все обнаруженные неполадки.

Элегазовый выключатель с гашением дуги вращением.

Элегазовые выключатели среднего класса напряжения имеют больше разновидностей, чем вакуумные. Выше мы рассмотрели наиболее распространенный элегазовый компрессионный выключатель. Сейчас рассмотрим принцип действия более нового элегазового выключателя, принцип действия которого радикально отличается от описанного выше выключателя. На рис. 9. представлен элегазовый выключатель с гашением дуги вращением.
При включенном состоянии ток течёт по главному токопроводу, который состоит из верхнего и нижнего токового ввода (1и 14) и из неподвижного дугогасящего контакта и подвижного контакта главного токопровода и дугогасящего контакта (7,10 и 11). После команды отключения привод приводит в действие вал (13), который вращаясь через систему уплотнения, передает механически момент рычагу (12).

1 — верхний токовый ввод.
абсорбирующий материал. корпус из изолирующего материала
точки крепления катушка
главный токовый ввод неподвижный дугогасящий контакт
верхнее кольцо дуги нижнее        кольцо дуги
подвижный контакт главного токопровода подвижный дугогасящий контакт
рычаг из изолирующего материала вал с герметизируюииш уплотнением
нижний токовый ввод Рис. 9. Элегазовый выключатель с гашением дуги вращением.

Замкнутый выключатель Разомкнутый главный контакт  Период дугогашения       Разомкнутый
выключатель Рис. 10. Принцип работы элегазового выключателя с гашением дуги вращением.
Рычаг тянет за собой вниз подвижный контакт главного токопровода, на котором закреплен подвижный дугогасящий контакт. После разрыва главного токопровода дуга начинает гореть между неподвижным и подвижным дугогасящими контактами и переходит между верхним и нижним кольцами дуги. При этом отключаемый ток перераспределяется от главного токопровода на дугогасительный токопровод, протекая через катушку (5) верхнего и нижнего колец дуги . После перераспределения тока от главного токопровода на дугогасительный, под воздействием магнитного поля катушки, дуга начинает вращаться на поверхности колец, выдуваясь и охлаждаясь элегазом. После гашения тока при переходе через нуль дуга полностью гаснет и элегаз восстанавливает изоляционную прочность между верхним и нижним кольцами. Описанный процесс изображен на рис. 10. Гибридной конструкцией вышеописанных, автокомпрессионного и с гашением дуги вращением, элегазовых выключателей является, так называемый, автокомпрессионный элегазовый выключатель с гашением дуги вращением, принцип действия которого приводится на рис  11. Рис. 11. Принцип работы автокомпрессионного элегазового выключателя с гашением дуги вращением.
Из рисунка видно, что при включенном состоянии ток течет через главный токопровод. После команды отключения, в начальный момент, происходит разрыв главного токопровода. При этом неподвижный и подвижный дугогасящие контакты остаются замкнутыми и отключаемый ток перераспределяется от главного токопровода на дугогасительный токопровод протекая через катушку неподвижного дугогасящего контакта, подвижный дугогасящий контакт и через гибкую шину. После расхождения неподвижного и подвижного дугогасящих контактов, между ними загорается дуга, которая под воздействием магнитного поля катушки вращается по поверхности неподвижного и подвижного дугогасящих контактов, выдувается и охлаждается элегазом через подвижный дугогасительный контакт под воздействием избыточного давления дугогасительной камеры. При полном расхождении контактов дуга полностью гаснет и элегаз восстанавливает изоляционную прочность между контактами.

Определение и применение элегаза

Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств. В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.

Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.

Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность. На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.

Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6

Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:

  • силовые трансформаторы, работающие по принципу магнитной индукции;
  • распределительные устройства комплектного типа;
  • линии высокого напряжения, связывающие удаленные установки;
  • высоковольтные выключатели.

Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.

Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.

Типы выпускаемых высоковольтных воздушных выключателей

Выключатели серии ВВБ

Они выпускаются ПО «Электроаппарат», рассчитаны на работы с U от 110 до 750 кВ. Их ключевые элементы устанавливаются на колонны, сделанные из фарфоровых надёжных изоляторов. Рабочее давление, которое должен создать компрессор от 2 до 2, 6 МПа этот фактор зависит от того на какое напряжение будет эксплуатироваться аппарат.

Выключатели серии ВВБК

Они предназначены для работы в сетях с напряжением 110–500 Кв. В их системах давление сжатого воздуха не должно быть меньше 4 МПа. Для улучшения гашения дуги при таких напряжениях применяется двухсторонняя подача очищенного воздуха

Простая пневматическая система, была заменена более усовершенствованной пневмомеханической, именно это позволило значительно уменьшить время срабатывания при отключениях, что важно в таких цепях

Выключатели серии ВВГ-20

Они исключительно используются для генераторов. Они разработаны для работы с номинальным напряжением 20 кВ и номинальный ток 20 кА, а ток отключения составляет 160 кА. Давление воздуха в районе 2 МПа. При включении коммутатора сначала происходит срабатывание отделителя, а затем уже и сам дугогасящий механизм. Они предназначены только для внутренней установки.

При работе со сжатым воздухом и опасным высоким напряжением стоит быть особо осторожным, так как эти два вида энергии могут привести не только к травмам, но и к лишению жизни.

Классификация по способу гашения электрической дуги

      Дугогасящие устройства различаются по способу воздействия на электрическую дугу с целью ее охлаждения:

• Автопневматический (компрессионный) обдув происходит при переходе газа в момент разрыва контакта из емкости с давлением 1,5 — 2 МПа в емкость с более низким давлением. За счет обдува дуга охлаждается и гаснет.

• Магнитное (вращающее) воздействие возникает при разрыве контактов, оснащенных постоянными магнитами или последовательно подключенной катушкой. Магнитное (электромагнитное) поле, возникающее между ними, создает завихрение электрической дуги, ее охлаждение и постепенное гашение.

• Продольное дутье провоцируется при перемещении подвижного контакта оснащенного перегородкой в сторону поршня. Элегаз под действием давления, возникающего между поршнем и перегородкой, выдувается через предусмотренные отверстия и формируется в газовую струю специальным соплом.

     Особенностью шестифтористой серы является ее способность сжижаться при довольно высоких температурах, что делает затруднительным использования выключателей в холодный период. Для решения этой проблемы применяется нагреватель, работающий на схеме автоматики, который обеспечивает постоянную температуру SF6.

     Таким образом, некоторые модели ЭВ способны работать при температурах от -35°С до +45°С и на высоте более 1000 м над уровнем моря.

Ссылка на основную публикацию